Интернет. Программы. Советы. Гаджеты. Безопасность

Какие бывают носители информации по информатике. Электронный носитель информации – это что такое? Носители, использующие технологию флеш-памяти

В современном обществе можно выделить три основных вида носителей информации:

1) бумажный;

2) магнитный;

3) оптический.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) - около 3500 символов

Страница учебника - 2000 символов

Гибкий магнитный диск – 1,44 Мб

Оптический диск CD-R(W) – 700 Мб

Оптический диск DVD – 4,2 Гб

Флэш-накопитель - несколько Гб

Съемный жесткий диск или Жесткий магнитный диск– сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Достоинства и недостатки хранения информации во внутренней и внешней памяти. (Достоинство внутренней памяти - быстротавоспроизведения информации, а недостаток- со временем часть информации забывается. Достоинство внешней памяти- большие объемы информации хранится долго, а недостаток- для доступа к определенной информации требуется время (например, чтобы подготовить реферат по предмету необходимо найти, проанализировать и выбрать подходящий материал))

Архив информации

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации - это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл - это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла. Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых степень сжатия может достигать 5 - 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей - 60 - 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) - помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде. Разархивация (распаковка) - процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память;

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами .

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том - это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько дискет.

Основными характеристиками программ-архиваторов являются:

скорость работы;

сервис (набор функций архиватора);

степень сжатия – отношение размера исходного файла к размеру упакованного файла.

Основными функциями архиваторов являются:

· создание архивных файлов из отдельных (или всех) файлов текущего каталога и его подкаталогов, загружая в один архив до 32 000 файлов;

· добавление файлов в архив;

· извлечение и удаление файлов из архива;

· просмотр содержимого архива;

· просмотр содержимого архивированных файлов и поиск строк в архивированных файлах;

· ввод в архив комментарии к файлам;

· создание многотомных архивов;

· создание самораспаковывающихся архивов, как в одном томе, так и в виде нескольких томов;

· обеспечение защиты информации в в архиве и доступ к файлам, помещенным в архив, защиту каждого из помещенных в архив файлов циклическим кодом;

· тестирование архива, проверка сохранности в нем информации;

· восстановление файлов (частично или полностью) из поврежденных архивов;

· поддержки типов архивов, созданных другими архиваторами и др.

В русском языке так много понятий, что порой тяжело различить два очень похожих, но все же разных определения. Но есть такие термины, которые не несут в себе дополнительных смыслов, а имеют четкое и понятное толкование. К примеру, понятие «электронный носитель информации». Это определение материального носителя, который записывает, хранит и воспроизводит данные, которые обрабатываются благодаря вычислительной технике.

С чего все началось?

Более общим значением данного термина является «носитель информации» или «информационный носитель». Оно определяет материальный объект или среду, которая используется человеком. При этом такой предмет долго хранит данные, не используя дополнительное оборудование.

Если для хранения информации на электронных носителях нужен источник энергии, то простой носитель данных может оказаться камнем, деревом, бумагой, металлом и другими материалами.

Носителем информации может называться любой объект, который показывает данные, нанесенные на него. Считается, что информационные носители нужны для записи, хранения, чтения, передачи материалов.

Особенности

Нетрудно догадаться, что электронный носитель информации - это разновидность информационного носителя. Он также имеет свою классификацию, которая, хотя и не установлена официально, но используется многими специалистами.

Например, электронные носители могут иметь однократную или многократную запись. Здесь подразумеваются устройства:

  • оптические;
  • полупроводниковые;
  • магнитные.

Каждый из этих механизмов имеет несколько видов оборудования.

Электронный носитель информации - это, прежде всего, ряд преимуществ перед бумажными вариантами. Во-первых, благодаря технологиям объем архивируемых данных может быть практически неограниченным. Во-вторых, сам сбор и подача актуальной информации эргономичные и быстрые. В-третьих, цифровые данные представлены в удобном виде.

Но электронный носитель имеет и свои недостатки. К примеру, сюда можно отнести ненадежность оборудования, в некоторых случаях габариты устройства, зависимость от электроэнергии, а также требования к постоянному наличию аппарата, который бы мог считывать файлы с такого цифрового накопителя.

Разновидность: оптические диски

Электронный носитель информации - это устройство, которое может быть оптическим, полупроводниковым, магнитным. Это единственная классификация такого оборудования.

В свою очередь, оптические устройства также делятся на виды. Сюда относят лазерный диск, компакт-диск, мини-диски, Blu-ray, HD-DVD и так далее. Оптический диск назван так благодаря технологии считывания информации. Чтение с диска происходит с помощью оптического излучения.

Идея этого электронного носителя зародилась давно. Ученые, которые разрабатывали технологию, были удостоены Нобелевской премии. Способ воспроизводить информацию с оптического диска появился еще в 1958 году.

Сейчас оптический электронный носитель имеет 4 поколения. В первом поколении были: лазерный диск, компакт-диск и мини-диск. Во втором поколении популярными стали DVD и CD-ROM. В третьем поколении выделились Blu-ray и HD-DVD. В четвертом поколении активно развиваются Holographic Versatile Disc и SuperRens Disc.

Полупроводниковые носители

Следующий вид электронного носителя информации - это полупроводниковый. Сюда относят флеш-накопители и SSD-диски.

Флеш-память - это самый популярный электронный носитель, который имеет полупроводниковую технологию и программируемую память. Он востребован благодаря своим небольшим размерам, невысокой цене, механической прочности, приемлемому объему, скорости работы и низкому потреблению энергии.

Недостатками такого варианта являются ограниченный срок использования и зависимость от электростатического разряда. Впервые о флеш-накопителе заговорили в 1984 году.

SSD-диск - это полупроводниковый электронный носитель, который также называют твердотельным накопителем. Он пришел на смену жесткому диску, хотя на данный момент полностью не заменил его, а лишь стал дополнением к домашним системам. В отличие от жесткого диска, твердотельный накопитель основан на микросхемах памяти.

Главными преимуществами такого носителя являются его компактные размеры, высокая скорость, износостойкость. Но вместе с этим у него большая стоимость.

Магнитные диски

И последним видом электронного носителя считаются магнитные устройства. К ним относят магнитные ленты, дискеты и жесткие диски. Поскольку первое и второе оборудование сейчас не используется, речь пойдет о ЖД.

Жесткий диск - это устройство, которое имеет произвольный доступ и основано на технологии магнитной записи. На данный момент это основной накопитель большинства современных компьютерных систем.

Его главным отличием от предыдущего вида, дискеты, является то, что запись осуществляется на алюминиевые или стеклянные пластины, которые покрывают слоем ферромагнитного материала.

Другие варианты

Несмотря на то что, говоря об электронных носителях, мы часто вспоминаем устройства, подключаемые к компьютеру, это не значит, что данное понятие применяется только в компьютерной технологии.

Распространение электронного носителя связано с удобством его использования, высокой скоростью записи и чтения. Поэтому это оборудование вытесняет бумажные носители.

Документы

Что такое паспорт с электронным носителем информации? Сначала этот вопрос может загнать человека в тупик. Но если хорошенько поразмыслить, то вспоминается такое понятие, как «биометрический паспорт».

Это государственный документ, который удостоверяет личность и гражданство путешественника в момент его переезда за границу государства и нахождения в другой стране. По сути, перед нами тот же паспорт, но с некоторыми нюансами.

Разница между биометрическим документом и традиционным паспортом в том, что первый является носителем специально вмонтированной микросхемы, которая хранит фотокарточку владельца и его личные данные.

Благодаря небольшой микросхеме можно получить фамилию, имя и отчество владельца документа, его дату рождения, номер паспорта, время выдачи и конец периода действия. По образцу, в микросхеме должны находиться биометрические данные человека. Сюда относят рисунок радужной оболочки глаза либо отпечаток пальца.

Введение документа: преимущества и недостатки

Несмотря на то что биометрический паспорт давно введен многими государствами, некоторые граждане негативно к нему относятся. Но у этого документа есть как преимущества, так и недостатки.

К преимуществам можно отнести то, что прохождение пограничного пункта теперь не занимает много времени. Если в таких местах есть специальное оборудование, которое может считывать микрочип, то прохождение границы становится безопасным и быстрым.

Но биометрический паспорт нравится далеко не всем гражданам. Многие считают, что введение подобного документа является проявлением тотального контроля, за которым стоит правительство США.

Уголовное дело

Развитие электронных носителей информации коснулось многих сфер. Сюда же можно отнести и уголовное дело. В 2012 году в Уголовно-процессуальный кодекс РФ ввели термин электронного носителя информации. Таким образом, подобные устройства могли стать вещественными доказательствами.

Электронные носители информации стали важной деталью при расследовании уголовного дела, при соблюдении некоторых условий. К примеру, данные с носителя должны иметь прямое отношение к расследованию. Кроме того, передачу их должен осуществлять достоверный источник, который можно было бы проверить. Данные должны иметь особый вид, к примеру, представленные видеозаписью, фотографиями, скриншотами и так далее. При изъятии цифровой информации нужно соблюдать установленные законы.

В ходе расследования уголовного дела необходимо вести и учет электронных носителей информации. В этом случае заводится журнал, в котором прописываются все устройства. Каждому присваивается идентификационный номер.

Важность электронных носителей в расследовании уголовного дела является спорным вопросом по сей день. Законодательно подобные устройства не отнесены к какому-либо источнику доказательств. Отсюда могут возникать разногласия.

Выводы

Электронные носители информации для современного человека - настоящая находка. С развитием технологий объемы архивов, которые хранят данные, становятся все больше. С каждым годом появляются новые возможности передачи и чтения информации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

ВИДЫ НОСИТЕЛЕЙ ИНФОРМАЦИИ

Введение

1. История

4.4 Сменные магнитные диски

6. Твердотельный накопитель

Заключение

Список используемой литературы

Введение

Носитель информации - физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель - мозг - находится внутри нас.

Носитель информации - это строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий - это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п.

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и т.д.). Устройство, которое обеспечивает запись - считывание информации, называется накопителем или дисководом, а хранится информация на носителях (например, дискетах).

В ходе реферата рассмотрим основные виды носителей информации.

1. История

Необходимость обмена информацией, сохранения письменных свидетельств о своей жизни и т.п. существовала у человека всегда. За всю историю человечества было перепробовано множество носителей информации. Так как носитель обладает рядом параметров, эволюция носителя информации определялась тем, какие требования к нему предъявлялись.

Древние времена. Древние люди на скалах изображали зверей, на которых они охотились. Однако угольные, глиняные, меловые рисунки смывало дождём, и для увеличения надёжности хранения информации первобытные художники стали выбивать силуэты животных на скалах острым камнем. Хотя камень повысил сохранность информации, скорость её записи и передача оставляли желать лучшего. Человек начал использовать для записи глину, которая имела свойства камня (сохранность информации), а её пластичность, удобство записи позволяли повысить эффективность записи.

Возможность эффективной записи способствует появлению письменности. Более пяти тысяч лет назад появляется (достижение шумерской цивилизации, территория современного Ирака) письменность на глине (уже не рисунки, а похожие на буквы значки и пиктограммы). Шумеры выдавливали знаки на табличках из сырой глины заострённой «клином» тростниковой палочкой (отсюда и название - клинопись). В ящиках («папках») хранились большие документы из десятков глиняных «страниц». Глина была тяжела для больших текстов, потребность в которых возрастала. Поэтому на смену ей должен был прийти другой носитель.

Египет: папирус. В начале третьего тысячелетия до н. э. в Египте появляется новый носитель, обладающий улучшенными некоторыми параметрами по сравнению с глиняными табличками. Там научились делать почти настоящую бумагу из папируса (высокого травянистого растения). Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия. Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки. Жители греческого города Пергам (первыми переняли древнюю технологию) усовершенствовали процесс выделки шкур и во II веке до н. э. начали производство пергамента. Достоинства нового носителя - высокая надёжность хранения информации (прочность, долговечность, не темнел, не пересыхал, не трескался, не ломался), многоразовость (например, в сохранившемся молитвеннике Х века учёные обнаружили несколько слоёв записей, сделанных вдоль и поперёк, стёртых и зачищенных, а с помощью рентгена там обнаружился древнейший трактат Архимеда).

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации:

Выжигание на узких бамбуковых пластинах со скреплением шнурами в «бамбуковые книги» (недостаток - занимают много места, низкая износостойкость шнуров);

Письмо на: шёлке (недостаток - дороговизна шёлка), сшиваемые в «книгу» листья пальм.

Из-за недостатков предыдущих носителей китайский император Лю Чжао приказал найти им достойную замену, и один из чиновников (Цай Лунь) в 105 г. н. э. разработал способ производства бумаги (который не сильно изменился и по сей пор) из древесных волокон, соломы, травы, мха, тряпья, пакли, растительных отходов и т. п.

Европа. На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII в. до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска. Стирание информации производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки. Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка. В XI - XVI вв. коренные народы Южной Америки придумали узелковое письмо «кипу» (в переводе с языка индейцев кечуа - узел). Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.

Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam - белые бусы. Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь. Как носитель на Руси использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка). Также применялось узелковое письмо, до сих пор сохранилось выражение "завязать узелок на память".

К концу XVI в. появляется своя бумага.

Средневековье. Как и в античном мире, так и в Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время. В XX веке для хранения информации начала использоваться тонкая железная проволока (20-е годы), магнитная лента (1928 г.), магнитные (середина 1960-х годов) и оптические диски (начало 1980-х годов). В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры

Современность. В XXI веке на смену оптическим и магнитным носителям пришли полупроводниковые микросхемы памяти. Жёсткие диски начинают вытесняться аналогичными полупроводниковыми.

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

2. Классификация носителей информации

Вариант классификации носителей информации, используемых в компьютерной технике, представлен на рисунке:

По форме сигнала, используемый для записи данных, различают аналоговые и цифровые носители. Для перезаписи информации с аналогового носителя на цифровой или наоборот необходимо сигнала.

Цифровые носители информации - компакт-диски, дискета, карты памяти

Аналоговые носители информации - магнитофонная и бабина кассеты

По назначению различают носители:

Для использования на различных устройствах;

Вмонтированы в определенное устройство.

По устойчивости записи и возможностью перезаписи:

Постоянные запоминающие устройства (ПЗУ), содержание которых не может быть изменен конечным пользователем (например, CD-ROM, DVD-ROM). ПЗУ в рабочем режиме допускает только считывание информации;

Записываемые устройства, в которые конечный пользователь может записать информацию только один раз (например, CD-R, DVD-R,DVD + R, BD-R);

Перезаписываемые устройства (например, CD-RW, DVD-RW, DVD + RW, BD-RE, магнитная лента и т.п.);

Оперативные устройства обеспечивают режим записи, хранения и считывания информации в процессе ее обработки. Быстрые, но дорогие ОЗУ (SRAM, статические ОЗУ) строятся на основе триггеров, медленные, но дешевые разновидности (DRAM, динамические ОЗУ) строятся на основе конденсатора. В обоих видах оперативной памяти информация исчезает после отключения от источника тока. Динамические ОЗУ требуют периодического обновления содержимого - регенерации.

По физическому принципу:

Перфорационные (с отверстиями или вырезами) - перфокарта, перфолента;

Магнитные - магнитная лента, магнитные диски;

Оптические - оптические диски CD, DVD, Blu-ray Disc;

Магнитооптические - магнитооптический компакт-диск (CD-MO);

Электронные (используют эффекты полупроводников) - карты памяти, флэш-память.

По конструктивным (геометрическими) особенностями:

Дисковые (магнитные диски, оптические диски, магнитооптические диски);

Ленточные (магнитные ленты, перфоленты);

Барабанные (магнитные барабаны);

Барточные (банковские карты, перфокарты, флеш-карты, смарт-карты);

Иногда носителями информации также называют объекты, чтение информации из которых не требуют специальных устройств - например бумажные носители.

Емкость цифрового носителя означает количество информации, которую на него можно записать, ее измеряют в специальных единицах - байтах, а также в их производных - килобайтах, мегабайтах и т.д., или же в кибибайтах, мебибайтах подобное. Например, емкость распространенных CD - носителей составляет 650 или 700 МБ, DVD-5 - 4,37 ГБ, двухслойных DVD 8,7 гб, современных жестких дисков - до 10 Тб (на 2009 год).

3. Ленточные носители информации

Ленточные носители информации используются для резервного копирования с целью обеспечения сохранности данных. В качестве таких устройств применяется стример, носителем информации в них используются магнитные ленты в кассетах (объём до 60 Гб) и ленточных картриджах (объём до 160 Гб).

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа, двуокиси хрома и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

4. Дисковые носители информации

Дисковые носители представляют гибкие и жёсткие, сменные и несменные, магнитные, магнито-оптические и оптические диски и дискеты.

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию.

Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем. носитель информация гибкий жесткий

4.1 Накопители на гибких магнитных дискетах

Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т.е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее время дискеты практически не используются.

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, т.к. интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого.

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х гг.

Дискеты требуют аккуратного обращения. Они могут быть повреждены, если дотрагиваться до записывающей поверхности; писать на этикетке дискеты карандашом или шариковой ручкой; сгибать дискету; перегревать дискету (оставлять на солнце или около батареи отопления); подвергать дискету воздействию магнитных полей.

В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации.

4.2 Накопители на жестком магнитном диске

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера.

Жёсткие магнитные диски предназначены для постоянного хранения информации, часто используемой в работе и представляют пакет жёстко скреплённых между собой 4 - 16 дисков, размещённых в герметическом корпусе. Первые жесткие магнитные диски состояли из двух дисков диаметром 3,5 дюйма и получили свое название по ассоциации с известным двуствольным ружьем фирмы Винчестер. Они имели объём 5 - 10 Мб. В дальнейшем количество дисков и ёмкость «жестких» дисководах увеличились, при этом ёмкость современных устройств варьируется от 40 до 200 и более Гб.

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

Большая емкость;

Простота и надежность использования;

Возможность обращаться к множеству файлов одновременно;

Высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

4.3 Накопители на оптических дисках

Компакт-диск («CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (CD-ROM). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере.

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1 - 3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2 - 4 Гбайт (при диаметре 300 мм).

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1. Диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;

2. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;

3. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.

В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом. Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

4.4 Сменные магнитные диски

Это гибкие диски ZIP и JAZ, диаметром 3,5”, емкостью 25-270 и более Мб, несовместимые с флоппи-дисками. Скорость вращения - 2941 об/мин, среднее время поиска равно 29 мс. Предназначены для длительного хранения информации и переноса её на другие ПК. Многие используют Zip устройства - это магнитные дискеты, которые имеют высокую емкость. Работает она на подобии простой дискеты. Проблемы с читаемостью могут быть такими же, как и с дисками.

5. Электронные носители информации

Вообще говоря, все рассмотренные ранее носители тоже косвенно связаны с электроникой. Однако имеется вид носителей, где информации хранится не на магнитных оптических дисках, а в микросхемах памяти. Эти микросхемы выполнены по FLASH-технологии, поэтому такие устройства иногда называют FLASH-дисками (в народе просто «флэшка»). Микросхема, как можно догадаться, диском не является. Однако операционные системы носители информации с FLASH-памятью определяют как диск (для удобства пользователя), поэтому название «диск» имеет право на существование.

Флэш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи - это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти - NAND). Преимуществом флэш-памяти над обычной является её энерго-независимость - при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Самый популярный и дешёвый носитель - микросхема памяти с управляющим контроллером и USB-разъёмом. Они широко варьируются по ёмкости (от 1 до 256 Гб), но зачастую пользователи забывают ещё об одном главном параметре флешки - о её быстродействии. Как правило, скорость записи таких накопителей составляет 5 - 7 мб/сек., а скорость чтения 15 - 20 мб/сек. При выборе следует обращать внимание на такие надписи, как «ultra fast» и «high-speed». Эти устройства обладают высокой скоростью. Этот вид носителей перестаёт работать в основном по причине блокирования управляющего контроллера - их хватает примерно на 5 лет, при этом в качестве архивирующих устройств использовать их не рекомендуется. Флешка, как и её "родственница" - карта памяти, всегда "гибнет" целиком.

6. Твердотельный накопитель

Твердотельный накопитель (англ. solid-state drive, SSD) - компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Наиболее распространенный вид твердотельных накопителей использует для хранения информации флеш-памяти типа NAND, однако существуют варианты, в которых накопитель создается на базе DRAM-памяти, снабженной дополнительным источником питания - аккумулятором.

В настоящее время твердотельные накопители используются не только в компактных устройствах - ноутбуках, нетбуках, коммуникаторах и смартфонах, планшетах, но могут быть использованы и в стационарных компьютерах для повышения производительности.

По сравнению с традиционными жёсткими дисками (HDD), твердотельные накопители имеют меньший размер и вес, но в несколько раз (6 - 7) большую стоимость за гигабайт и значительно меньшую износостойкость (ресурс записи).

Небольшие твердотельные накопители могут встраиваться в один корпус с магнитными жёсткими дисками, образуя гибридные жёсткие диски (SSHD, Solid-state hybrid drive). Флэш-память в них может использоваться либо в качестве буфера (кэша) небольшого объёма (4 - 8 ГБ), либо, реже, быть доступной как отдельный накопитель (Dual-drive hybrid systems). Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных.

В настоящее время наиболее заметными компаниями, которые интенсивно развивают направление SSD-накопителей в своей деятельности, можно назвать Intel, Kingston, Samsung Electronics, Toshiba, SanDisk, Corsair, Renice, OCZ Technology, Crucial и ADATA.

В начале 2010-х годов на рынке были представлены SSD-накопители с объёмами 64, 80, 120, 256, 512 гигабайт, отдельные модели имеют ёмкость 0.7, 0.8, 1, 1.6 терабайт или более. За 2012 год поставки SSD составили около 34 миллионов устройств, основные рынки: потребительский, серверный, индустриальные применения. Цены на 128 ГБ SSD в 2013 году находились в пределах 70 - 85 долларов США.

Преимущества.

1. Отсутствие движущихся частей, отсюда:

Полное отсутствие шума (0 дБ);

Высокая механическая стойкость (кратковременно выдерживают порядка 1500 g);

2. Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации.

3. Скорость чтения/записи выше, чем у распространенных жёстких дисков.

4. Количество произвольных операций ввода-вывода в секунду (IOPS) у SSD на несколько порядков выше, чем у жёстких дисков.

5. Низкое энергопотребление.

6. Широкий диапазон рабочих температур.

7. Намного меньшая чувствительность к внешним электромагнитным полям.

8. Малые габариты и вес.

Недостатки.

1. Цена гигабайта SSD-накопителей в несколько раз (6 -7 для наиболее дешевой флеш-памяти) выше цены гигабайта HDD (по состоянию на октябрь 2014 - 35 центов за гигабайт). К тому же стоимость SSD прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит не только от количества пластин и медленнее растёт при увеличении объёма накопителя.

2. Применение в SSD-накопителях команды TRIM может сильно осложнить или сделать невозможным восстановление удалённой информации recovery-утилитами.

3. Невозможность восстановить информацию при электрических повреждениях. Так как контроллер и носители информации в SSD находятся на одной плате, то при превышении или значительном перепаде напряжения чаще всего сгорает весь SSD-носитель с безвозвратной потерей информации. Напротив, в жёстких дисках чаще сгорает только плата контроллера, что делает возможным восстановление информации с приемлемой трудоёмкостью.

Заключение

Рассмотрев данную тему можно сказать, что с развитием науки и техники будут появляться новые носители информации, более совершенные, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.

Широкое распространение оптических дисков связано с целым рядом их преимуществ по сравнению с магнитными носителями, а именно: высокая надёжность при хранении, большой объём сохраняемой информации, записывание на одном диске звуковой, графической и буквенно-цифровой, быстрота поиска, экономичное средство хранения и предоставления информации, они обладают хорошим соотношением «качество - цена».

Что же касается жестких дисков, то без них пока ещё ни один компьютер не обходился. В развитии жёстких дисков отчётливо прослеживается основная тенденция - постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счёте - увеличением производительности. Создание новых технологий постоянно усовершенствует этот носитель, он меняет свою ёмкость до 80 - 175 Гбайт. В более отдалённой перспективе ожидается появления носителя, в котором роль магнитных частиц будут играть отдельные атомы.

В результате его ёмкость в миллиарды раз превысит существующие в настоящее время стандарты.

Также есть одно преимущество утерянную информацию можно восстановить с помощью определённых программ.

Совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

На стадии разработки находятся голографические цифровые носители информации ёмкостью до 200 Гбайт. Они имеют форму диска, состоящего из трёх слоёв. На стеклянную подложку толщиной 0,5 мм наносится записывающий (рабочий) слой толщиной 0,2 мм и полумиллиметровый прозрачный защитный слой с отражающим покрытием.

Список литературы

1. Росс Г.В. "Основы информатики и программирования"/ Г.В. Росс, В.Н. Дулькин, Л.А. Сысоева - М.: ПРИО, 1999г.

2. Информатика: Учебник. - 3-е перераб.изд./ под ред. Н.В.Макаровой - М.: Финансы и Статистика, 2002 г.

3. Левин В.И. "Носители информации в цифровом веке"/В.И.Левин - М.: КомпьютерПресс, 2000г. - 256 с.

4. https://ru.wikipedia.org

Размещено на Allbest.ru

...

Подобные документы

    Выпускаемые накопители информации. Основное описание внешних запоминающих устройств на гибких магнитных дисках. Физическое форматирование. Сущность накопителя на жестком магнитном диске. Описание работы стримера и оптических запоминающих устройств.

    реферат , добавлен 26.11.2008

    Информация-это отражение разнообразия, присущего объектам и явлениям реального мира. Понятие информации. Свойства информации. Классификация информации. Формы представления информации. Информация-мера определенности в сообщении. Достоверность информации.

    контрольная работа , добавлен 24.09.2008

    Изменение концентрации носителей и проводимости в приповерхностном слое полупроводника под действием электрического поля. Эффект поля в собственном и примесном полупроводниках. Механизмы рекомбинации носителей. Законы движения носителей в полупроводниках.

    презентация , добавлен 27.11.2015

    Развитие носителей информации. Звукозапись и процесс записи звуковой информации с целью её сохранения и последующего воспроизведения. Музыкальные механические инструменты. Первый двухдорожечный магнитофон. Звук и основные стандарты его записи.

    реферат , добавлен 25.05.2015

    Изучение радиотехнических систем передачи информации. Назначение и функции элементов модели системы передачи (и хранения) информации. Помехоустойчивое кодирование источника. Физические свойства радиоканала как среды распространения электромагнитных волн.

    реферат , добавлен 10.02.2009

    Накопители на магнитной ленте, накопители прямого доступа. Принципы работы накопителя на сменных магнитных дисках. Накопитель на гибких магнитных дисках. Накопитель на жестком магнитном диске - винчестер. Современные внешние запоминающие устройства.

    курсовая работа , добавлен 08.05.2009

    Особенности оптических систем связи. Физические принципы формирования каналов утечки информации в волоконно-оптических линиях связи. Доказательства уязвимости ВОЛС. Методы защиты информации, передаваемой по ВОЛС - физические и криптографические.

    курсовая работа , добавлен 11.01.2009

    Хранение больших объемов данных на внешних магнитных носителях. Произвольный метод доступа и управления RAMAC, физическая ёмкость дисков. Расхождение между двоичными значениями и десятичными в понимании единиц измерения ёмкости дисков и накопителей.

    реферат , добавлен 21.01.2010

    Радиоэлектронный канал. Структура радиоэлектронного канала утечки информации. Передатчики функциональных каналов связи. Виды утечки информации. Антенные устройства. Классификация помех. Экранирующие свойства некоторых элементов здания.

    доклад , добавлен 20.04.2007

    Проектирование помещения для хранения ценной информации. Возможные каналы утечки данных. Характеристики средств защиты информации. Съем информации за счет электромагнитных излучений проводных линий 220 B, выходящих за пределы контролируемой зоны.

Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример - наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.

Бумажные носители

В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:

Перфокарты - картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.

В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.

Магнитные носители

В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.

После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:

Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере - 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.

Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.

Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.

Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.

Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд - 2.5 терабайт, LTO 2012 года.

Еще один тип магнитных носителей - дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель - опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.

Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году - так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.

Оптические носители

Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.

В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже - 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили названиеCD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.

Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем - 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.

В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray - 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.

Полупроводниковые носители

В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти , флэшках, SSD-накопителях и гибридных жестких дисках.

Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.

Облачные хранилища

С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft - OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.

Электронные носители информации

Технология записи информации на магнитные носители появилась сравнительно недавно - примерно в середине 20-го века (40-ые - 50-ые годы). Но уже несколько десятилетий спустя - в 60-ые - 70-ые годы - это технология стала очень распространённой во всём мире.

Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой "запоминается" информация. Процесс записи также похож на процесс записи на виниловые пластинки - при помощи магнитной индукционной катушки вместо специального аппарата на головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом. А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

Компамкт-кассемта (аудиокассемта или просто кассемта) -- носитель информации на магнитной ленте, во второй половине XX века -- распространённый медианоситель для звукозаписи. Применялся для записи цифровой и аудиоинформации. Впервые компакт-кассета была представлена в 1964 году компанией Philips. По причине своей относительной дешевизны долгое время (с начала 1970-х по 1990-е годы) компакт-кассета была самым популярным записываемым аудионосителем, однако, начиная с 1990-х годов,

была вытеснена компакт-дисками.

Сейчас в мире присутствует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бобинные ленты и.т.д. Но постепенно открываются новые законы физики, и вместе с ними - новые возможности записи информации. Всего пару десятков лет назад появилось множество носителей информации, базирующихся на новой технологии - считывания информации при помощи линз и лазерного луча.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

2. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

3. Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Название оптических дисков определяется методом записи и считывания информации. Информация на дорожке создается мощным лазерным лучом, выжигающим на зеркальной поверхности диска впадины, и представляет собой чередование впадин и отражающих участков. При считывании информации зеркальные островки отражают свет лазерного луча и воспринимаются как единица (1), впадины не отражают луч и соответственно воспринимаются как ноль (0). Этот принцип позволяет достичь высокой плотности записи информации, а следовательно и большой емкости при минимальных размерах. Компакт-диск является идеальным средством хранения информации - дешев до смешного, практически не подвержен каким-либо влияниям среды, информация записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, имеет ёмкость 700 Мбайт.

Магнитооптический диск -- носитель информации, сочетающий свойства оптических и магнитных накопителей. Диск изготовлен с использованием ферромагнетиков. Магнитооптические диски при всех своих достоинствах имеют серьёзные недостатки: относительно низкую скорость записи, вызванную необходимостью перед записью стирать содержимое диска, а после записи--проверкой на чтение; высокое энергопотребление - для разогрева поверхности требуются лазеры значительной мощности, а следовательно и высокого энергопотребления. Это затрудняет использование пишущих МО приводов в мобильных устройствах.

DVD (ди-ви-дим, англ. Digital Versatile Disc -- цифровой многоцелевой диск) -- носитель информации в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт дисков. Первые диски и проигрыватели DVD появились в ноябре 1996 в Японии и в марте 1997 в США. Они предназначались для записи и хранения видеоизображений. Интересно, что первые DVD-"болванки" объёмом 3,95 Гб стоили тогда 50$ за штуку. В настоящее время существует шесть разновидностей подобных дисков ёмкостью от 4,7 до 17,1 Гб. Они используются для записи и хранения любой информации: видео, аудио, данных.

Работа с информацией в наше время не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции.

Первая компьютерная революция свершилась в конце

50-х годов; ее суть можно описать двумя словами: компьютеры появились.

Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини-ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция - в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

Прежде всего, должно быть устройство с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Рассмотрим некоторые из этих устройств.

1. Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт - картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт и рисунок ткани будет совсем другим - это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков: - очень низкая скорость доступа к информации; - большой объем перфокарт для хранения небольшого количества информации; - низкая надежность хранения информации; - к тому же от перфоратора постоянно летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах и уборщицы были страшно недовольны. Перфокартами люди были вынуждены пользоваться не потому что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего, приходилось выкручиваться.

2. Накопитель на магнитной ленте (стриммер): основан на использовании устройства магнитофонного типа, и кассет с магнитной пленкой. Этот способ накопления информации известен давно и успешно применяется и сегодня. Это объясняется тем, что на небольшой кассете помещается довольно большой объем информации, информация может храниться продолжительное время и скорость доступа к ней гораздо выше, чем у устройства чтения перфокарт. С другой стороны стриммер пригоден только для накопления, хранения больших массивов информации, резервирования данных. Обрабатывать информацию с помощью стриммера практически невозможно: стример - устройство последовательного доступа к данным: чтобы получить 5-й файл мы должны промотать четыре. А если нужен 7529-й?

3. Накопитель на гибких магнитных дисках (НГМД - дисковод). Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.

4. Накопитель на жестком магнитном диске (НЖМД - винчестер): является логическим продолжением развития технологии магнитного хранения информации. Имеют очень важные достоинства: - чрезвычайно большая емкость; - простота и надежность использования; - возможность обращаться к тысячам файлов одновременно; - высокая скорость доступа к данным.

5. Уже рассмотренные нами CD и DVD-диски.

Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления.

Мы уже рассматривали выше хранение данных на CD и DVD-дисках. Несмотря на их удобство, в связи с необходимостью использования максимально большого объема информации, уже начинается процесс их вытеснения. В ближайшие годы в таких устройствах персональной вычислительной техники, как компьютер, флэш-память будет грозным соперником жёстких дисков.

6. Флеш-память (англ. Flash-Memory) -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Благодаря своей компактности, дешевизне и низкой потребности в электроэнергии флеш-память уже широко используется в портативных устройствах, работающих на батарейках и аккумуляторах -- цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах. Кроме того, она используется для хранения встроенного программного обеспечения в различных периферийных устройствах (маршрутизаторах, мини-АТС, коммуникаторах, принтерах, сканерах). Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Основное слабое место флеш-памяти -- количество циклов перезаписи. Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи -- это намного больше, чем способна выдержать дискета или компакт-диск. Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). Благодаря большой скорости, объёму и компактным размерам USB флеш-носители уже вытесняют с рынка компакт-диски.